121+x^2=196

Simple and best practice solution for 121+x^2=196 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 121+x^2=196 equation:



121+x^2=196
We move all terms to the left:
121+x^2-(196)=0
We add all the numbers together, and all the variables
x^2-75=0
a = 1; b = 0; c = -75;
Δ = b2-4ac
Δ = 02-4·1·(-75)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*1}=\frac{0-10\sqrt{3}}{2} =-\frac{10\sqrt{3}}{2} =-5\sqrt{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*1}=\frac{0+10\sqrt{3}}{2} =\frac{10\sqrt{3}}{2} =5\sqrt{3} $

See similar equations:

| 121+b^2=196 | | X/2-2/4=x/3+1/2 | | 22x=34 | | 2=x-(-9) | | 7(4x-9)=-29+6x | | 17=3+b | | 0=a-(-9) | | i(72*i+835)-60=100 | | 2z-4z(9-3z)=62 | | -3-y=15 | | x^2+14x/3-4/3=0 | | c=-2-(-11) | | 1+(-7)=a | | x^2+4.66x-1.33=0 | | -6+y/4=-22 | | y=37+(-8) | | 11=b+14 | | 2/3x=10x= | | 5x+35-8x=23 | | F(x)=4x3-x2-5x+7 | | x^2-5x+30=7x-10 | | 3x^2+12x+26=0 | | 37-c=56 | | X-(.4x)=54 | | 4(1x+5)=4x+5x | | 4a=-19 | | 2(5x–3)=41. | | 2/t-3t/2-7=0 | | 11=-3x | | 4y-4=2y+27 | | 4/(t-3)+t/2-2=0 | | 5x-(-6)=150 |

Equations solver categories